
MIXING OF HIGH-TEMPERATURE 

OF NONUNIFORM GASES 

A. L .  M o s s ~  

J E T S  

We examine the problem of mixing of two plane-paral le l  (coflowing or  opposed) h igh- tempera ture  
jets of nonuniform compress ib le  gases .  Par t i cu la r  solutions are  obtained. In [1] the boundary- layer  dif- 
ferential  equations were  used as the basis  for examining the problem of mixing of two plane (coflowing or  
opposed) jets of nonuniform compress ib le  gases for the condition of a l inear relationship between the v i s -  
cosi ty and enthalpy (g = h, k = 1), whose validity ra ises  no question in the region of comparat ively  low tem-  
pera tures .  When considering jets heated to high t empera tu res ,  this comparat ively  simple relat ion gives 
way to the power law g = h k, in which k approaches 0.5 with increase  of the tempera ture .  With use of the 
lat ter  relat ion the result ing sys tem of differential equations, even for uniform gases ,  becomes so complex 
[2] that for a concre te  problem it can only be integrated numerical ly .  The use of the relat ion proposed by 
Chapman and Rubesin [3] for studying h igh- tempera ture  jets makes it possible to obtain the same compu- 
tational advantages as in the case k = 1 [1], and at the same t ime descr ibes  sa t is factor i ly  the connection 
between viscosi ty  and enthalpy over a wide t empera tu re  range. 

Transi t ion to high t empera tu res  makes it possible to use the equation of state, since the dissociat ion 
and ionization p rocesses  which take place in gases  at high tempera tures  lead to significant change of the 
gas constant R. In this case  the relation p = c o n s t / T ,  which follows from the equation of state, becomes 
invalid. The relat ionships between the density and enthalpy for the following gases:  nitrogen, hydrogen, 
oxygen, air ,  and for water  have been obtained on the basis  of thermodynamic calculations (using the data 
of [4, 5]) and the equation of state.  The result ing curves  of density p versus  enthalpy h f rom the the rmo-  
dynamic calculation (points) and f rom the approximation p = A / h  n are  shown in Fig. 1: a) H2, b)O2, c) N2, 
d) air ,  and in Fig. 2 for water  vapor  (plasma). We see that all the data are  approximated with adequate 
precis ion by the express ion p = A / h  n, which is a simple analytic approximation to the equation of state in 

~ the coefficients A and n are  constants and depend on the kind of gas:  H2-1g A = 4; n = 0.77; for C 2 
respect ively 6.1 and 0.98; for N 2 5.3 and 0.862; and for a ir  4.6 and 0.810. Analogous relat ions for a ir  and 
water  vapor were  obtained in [6]. 

In the following we present  resul ts  of a theoret ical  study of the t ranspor t  p rocesses  in the mixing of 
two plane laminar  jets of nonuniform compress ib le  gases  for eoflowing or  opposed jet motion. We assume,  
as in [1], that mixing is accomplished as a resul t  of molecular  diffusion in the boundary layer  (mixing zone) 
at the jet contact  boundary and that the miscible  gases do not interact  chemical ly.  All the physical  assump-  
tions of boundary- l aye r  theory  hold and, in addition, we assume that P ~ 1 = const, S ~ i = const  and, in 
addition,P ~ S. The latter assumptions are  obviously justified by the fact that, as shown by calculations 
using the kinetic theory  of gases  [3], the influence of the gas mixture enthalpy on p is comparat ively  small  
and with increase  of the enthalpy osci l la tes  about an average  value which can be taken as approximately 0.7. 

We obtain the sys tem of differential equations of steady motion of nonuniform compress ib le  gases  in 
the laminar  boundary layer  (mixing zone) of two coflowing or  opposed h igh- tempera ture  s t r eams  with ac-  
count for the coupling relation of [3] and the approximation p = A / h  n without account for thermo-diffusion,  
assuming the p res su re  constant throughout the flow field, in the following form: 

a(pu)~a(pv) O, aa au o f au\: A 
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Fig. 2 

ocr oci o (p, ocr td-h s Ts\ 
0 u ~  +o ,  ~ = - ~ V \ T ~ ) k  = h%-4% hw~ h~ = ~ )  (~) 

(T s = 102~ is the Sutherland constant) 

with the boundary conditions in the region x > 0 (x = 0 is the point where jet 
mixing begins) 

u = ul, h = hi, C~ = C 1 for y = + oo (2) 
tt = tt2, h = h 2 ,  C i = C2 for y = - -  oo 

After t ransforming  (1) with the boundary conditions (2) to dimensionless 
form, taking as the scales  the quantities associa ted with the undisturbed flow 
in the region y > 0, and then again t ransforming  to Dorodnitsyn var iables ,  we 
obtain 

a.  or  a .  a .  a I 
o-~ + .-~ O, u -g-~ + V a~ 1 poo aTI L \ hooJ a~iJ 

a~ 
0 

OC, oc, Foo a [ t f h "~1-"oc,] an ~v 
u-~(+v3-fi-=7-=-=-~L--g-\~-/ ~-i V = pv + u-O-E=_, 6 - , ,  

with the boundary conditions 

u = l ,  h = l ,  C i = t  for ~ l = + c ~  

u = u g ,  h = h M  C~=C.] for ~1=- -~176  

um = u~ h~ = h~ , Cm C~ 
-6T~ , W = -dT 

For  the coflowing jet  case the value of the velocity u 2 is positive, for the opposed jet case it is nega-  
tive; u 1 is also always g rea t e r  than 0. 

Fur ther  assuming that the longitudinal velocity component, enthalpy, and concentrat ion a re  functions 
[2] of only the var iable  ~ provided P and S a re  constant, we obtain 

q ~ ' + q / '  + '~ = 0 

h"+  2h ' (~ -  + O ) + ( ~ - - t ) ~ ( P - - l ) [ - ~ ( ~ " ) ~  + (~")~1 = 0 (3) 

with the boundary conditions 

~ ' = 1 ,  h = l ,  C i = t  for ~ =  ~- co (4) 
T '=um,  h=hm,  C i = C  m for ~ = - - o o  

The sys tem of Eq. (3) obtained after  the t ransformat ions  is so complex that it can be integrated only 
numer ica l ly  for any concre te  problem. To obtain an analytic solution of the problem we examine the case 
when n = l .  
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Fig .  3 

Ana lys i s  of  the  exponent  of  the  a p p r o x i m a t i o n  p = A / h  n shows tha t  fo r  the  g a s e s  c o n s i d e r e d  and 
shown in F i g s .  1-3  the  exponent  does  not d i f fe r  m a r k e d l y  f r o m  1. In any c a s e ,  the  c o n s i d e r e d  v e r s i o n  fo r  
h i g h - t e m p e r a t u r e  condi t ions  is m u c h  c l o s e r  to the  ac tua l  s i tua t ion  than  a s s u m p t i o n  of  a l i nea r  connec t ion  
be tween  the  v i s c o s i t y  and enthalpy p = h, w h e r e  the  a s s u m p t i o n  k = 1 in p lace  of  k = 0.5 is a c o n s i d e r a b l y  
r o u g h e r  a p p r o x i m a t i o n .  

F o r  n = 1 the  s y s t e m  (3) r e d u c e s  to a s y s t e m  of au tonomous  d i f f e r en t i a l  equat ions  wi th  the  bounda ry  
condi t ions  (4) 

(5) 
h " §  2P~oh'_~___+. (~ _ 1) (P - -  t )  (~p=)~ = O, C~ ~ + S~v~C~ _ 0 

F o r  the so lu t ion  of the  dynamic  p r o b l e m ,  as  in [2], we use  the  i t e r a t ion  method  of [7], wr i t ing  the un-  
known funct ion in s e r i e s  f o r m  

c o  

(~) = ~, (m - l ) ~  (~) 

The  f i r s t  Eq.  (5) d i f f e r s  f r o m  tha t  so lved  in [2] only  in the  cons t an t  f a c t o r  1 / v ~ ,  t h e r e f o r e  we sha l l  
w r i t e  the  f inal  e x p r e s s i o n s  fo r  the  ve loc i t y  componen t s  

u = + ~0' (~ )=  + [ i  + (u~ - -  l ) ( i - - e r r  ~ ) ]  (6) 

We obta in  the  so lu t ion  of the  e n e r g y  equa t ion  (6), as  in [11, by the  method  of v a r i a t i o n  of  c o n s t a n t s ,  
us ing  the  subs t i tu t ion  f r o m  the  f i r s t  equat ion (5) 

I I "": '  = voo_~--~, " , ~  Td~ = - - v ~  ~ ~ = - - v ~ l n  ~,, (0) (8) 
- - c o  

We f inal ly  obta in  the g e n e r a l  so lu t ion  of the second  Eq.  (5) in the  f o r m  

h = h m .+ 0.5 (1 - -  hm) (t + err ~l/2-P) @ 0.25 (2 - -  1) Moo = (P - -  t) 
• [0.5(i  -F err{ ~f2F) R ( - oo, -F o o ) - - R ( - -  r ~)l 

R ( - ~ ,  + ~ ) =  f W(~) I=p f (~")=[~P"(~)J-'~d~db 
- - c o  - - ~  

R ( -  ~ ,~ )=  I [~"(~) 1~ I (~")~ [~"(~))-~"a~d~ 
- - 0 o  - - c o  

(9) 

We obta in  the  so lu t ion  of the  d i f fus ion equat ion with  the  c o r r e s p o n d i n g  bounda ry  condi t ions  (4) wi th  
accoun t  fo r  the  subs t i tu t ion  (8) in the  f o r m  

- - o o  - - r  
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or  finally, with account for the expression for the function ~" (~) 

C i = 0.5 [(Cm + 1) --  (Cm --  t) erI ~ !,r2S] (10) 

The nature of the gas motion, enthalpy, and concentrat ion distributions in the mixing region of the 
two opposed or  coflowing s t r eams ,  as we see f rom the solutions (6)-(10), is analogous to that obtained in 
[1, 2], where the pattern is presented graphically and analyzed in considerable detail. 

As an example we shall compare  on the basis  of (9) and (10) the enthalpy and concentration dis t r ibu-  
tion in the mixing region of two coflowing (or opposed) s t r eams  of different compress ib le  gases  for the 
case of the l inear relation [1] between the v iscos i ty  and enthalpy (/~ = h, k = 1) and for the case of the ap- 
proximating relation p = A / h  n. Figure  3a, b shows resul ts  of the calculations of the total enthalpy h and 
concentrat ion C i as a function of the general ized pa rame te r  ~ = 71/24-~(in the case  P = i for the two ve r -  
sions being compared  for various values of h m and C m. In Fig. 3a the curves 1, 2, 3 cor respond to the 
values h m = 0, 0.3, 0.5; the solid lines a re  for /z = h, k = 1, the dashed lines a re  for p = A / h  n. In Fig. 3b 
the curves  1 and 2 cor respond to the values C m = 0 and 0.5. 

The nature of the curves  shows that the effective mixing zone width when using the relation p = A / h  n 
in the solution is less than when using the l inear relation. We must  assume that this situation is a conse-  
quence of additional turbulization of the flow, possibly as a resul t  of dissociat ion and ionization at the high 
t empera tu res .  Thus, the more  rapid equalization of the enthalpy profile indicates more  intense processes  
in the mixing region. 
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